Raytheon

Command, Control, Communication and Information Systems 1001 Boston Post Road Mariborough, Massachusetts 01752-3789 USA 508.490.1000

January 31, 2002

Massachusetts Department of Environmental Protection Northeast Regional Office Bureau of Waste Site Cleanup 205 Lowell Street Wilmington, MA 01887

Re: Release Abatement Measure 120-Day Status Report Former Raytheon Facility 430 Boston Post Road Wayland, Massachusetts RTN 3-13574, Permit No. 133939

Dear Sir or Madam:

Enclosed please find a Release Abatement Measure (RAM) 120-Day Status Report for the above referenced Site. The RAM 120-Day Status Report was prepared by Environmental Resources Management, Inc. (ERM), on behalf of Raytheon Company (Raytheon).

If you have any questions regarding the report, please contact me at (508) 490-1707 or at the address listed below.

Sincerely,

Ronald C. Slager, Jf. Raytheon Company Restoration Program Manager 1001 Boston Post Road M/S 1-2-1567 Marlborough, MA 01752

Enclosure

cc: Mr. John Drobinski, ERM, 399 Boylston Street, 6th Floor, Boston, MA 02116 PIP Participants 31 January 2002 Reference: 143.60

Massachusetts Department of Environmental Protection Northeast Regional Office Bureau of Waste Site Cleanup 205 Lowell Street Wilmington, MA 01887

Re: Release Abatement Measure 120-Day Status Report In Situ Chemical Oxidation Pilot Study Former Raytheon Facility 430 Boston Post Road Wayland, Massachusetts (the "Site") RTN 3-13574, Permit No. 133939

Dear Sir or Madam:

On behalf of Raytheon Company (Raytheon), Environmental Resources Management (ERM) is submitting this Release Abatement Measure (RAM) 120-Day Status Report for the above-referenced Site. This RAM Status Report was prepared in accordance with the requirements of 310 CMR 40.0445 of the Massachusetts Contingency Plan (MCP). The original RAM Transmittal Form BWSC-106 is included as Appendix A.

BACKGROUND

ERM prepared a RAM Plan, dated 11 September 2001, that was submitted to the Department of Environmental Protection (DEP or Department) on 12 September 2001. The RAM Plan presented plans for a pilot study in two areas involving in-situ chemical oxidation (ISCO) of chlorinated hydrocarbons (primarily trichloroethene (TCE)) in groundwater. The purpose of the RAM was to evaluate the ability to reduce the concentrations of chlorinated volatile organic compounds (CVOCs) in groundwater using in-situ chemical oxidation. The two pilot study areas were designed to evaluate two different delivery methods for introducing oxidants to the subsurface. Figure 1 presents a site locus map and Figure 2 presents a site layout map.

The Department issued a Conditional Approval of Release Abatement Measure letter, dated 6 November 2001 (Appendix B), regarding the

proposed RAM activities presented in the above-referenced RAM Plan. Subsequent to issuing this letter, the Department filed a Form BWSC-102B for the Site (Appendix B), which indicates that a Conditional Approval letter was not necessary to implement the RAM. In accordance with the Form BWSC-102B, Raytheon will evaluate DEP's recommendations for any future oxidant applications at the Site.

A chronology of events related to the RAM is provided in Table 1. The remainder of this RAM Status Report is formatted consistent with the requirements of Massachusetts Contingency Plan (MCP), 310 CMR 40.0445 (2).

A) STATUS OF RESPONSE OPERATIONS

As part of the RAM, two concurrent ISCO pilots were conducted to evaluate the efficacy of the following delivery methods:

- Direct Push Injection (MW-33 pilot study area): this pilot study • consisted of a single injection point located 55 feet northnortheast of the MW-33 well cluster. Oxidant was injected into seven discrete three-foot vertical intervals, which were designed to facilitate oxidant delivery from the top of the silt unit (28 feet below grade) to slightly above the water table (12 feet below grade). The use of short vertical injection intervals was designed to enable relatively uniform oxidant delivery within the lithology. The oxidant (potassium permanganate) was injected under pressure using a pneumatic fracturing and liquid atomized injection (PFLAI) technique and allowed to migrate via natural advective and diffusive flow from the injection point throughout the study area. The RAM Plan indicated that two or three injection points would be used. However, geologic data obtained during the initial characterization phase suggested that one point could be used for the pilot study. Monitoring well couplets (i.e., a water table well and an adjacent deeper well) were installed up-gradient, cross-gradient and down-gradient of the injection point (Figures 2 and 3). Groundwater samples were collected as per the RAM Plan to evaluate the flow rate of oxidants through the aquifer, dispersivity within the aquifer and the rate of mass reduction achieved using this technology.
- Single Well Injection (MW-43 pilot study area): this pilot study was conducted as a single-well injection-drift test utilizing

existing monitoring well MW-43S as the injection well. The oxidant (sodium permanganate) was passively injected (i.e., via gravity feed) and allowed to migrate via natural advective and diffusive flow. Six monitoring wells were installed around and down-gradient of the injection well (Figures 2 and 3) to evaluate the radius of influence of the injection and the efficacy of the oxidants in reducing TCE concentrations down-gradient of the MW-43 pilot study injection area.

The pilot studies consisted of the following tasks:

- Install monitoring wells
- Conduct bench-scale oxidant demand tests
- Establish baseline hydrogeochemistry
- Apply reagent
- Post-injection groundwater monitoring

A description of the pilot study activities is provided below.

Install Monitoring Wells

The purpose of this task was to conduct a detailed evaluation of hydrogeology within the pilot study areas and provide a detailed well network to evaluate the effectiveness of the pilots.

On 25 August 2001, ERM provided oversight for installation of 15 monitoring wells at the Site. Nine borings were advanced in the vicinity of the MW-33 well cluster by ConeTec, Inc. of West Berlin, New Jersey using a cone penetrometer (CPT). A CPT is a direct push drill rig that uses electronic instrumentation to measure various parameters that, when interpreted, provide real time hydrogeologic information. Six borings were advanced adjacent to and down gradient of the MW-43 well couplet by Geosearch, Inc. of Sterling, Massachusetts using a Geoprobe direct-push drill rig. On 24 September 2001, an additional well was installed in the MW-33 pilot study area by Geosearch using a Geoprobe direct-push drill rig.

Monitoring wells were constructed in all borings using ³/₄-inch or oneinch inside diameter (ID), Schedule 40, polyvinyl chloride (PVC) riser pipe and well screen, sand filter pack, bentonite seal, concrete surface

seal and flush-mounted roadbox. A summary of monitoring well construction data is presented in Table 2. Monitoring well locations are shown on Figure 2. Boring logs are presented in Appendix C.

In the MW-33 pilot study area, five borings were advanced to a depth of 35 feet and logged using the CPT. The CPT data indicated heterogeneity with a general change in stratigraphy from silty sand and sand to sandy silt and silt at approximately 25 feet depth (Appendix B). Monitoring well couplets were installed at each of the five locations allowing for monitoring of the silty sand and sand interval (15 feet to 25 feet depth) and the lower sandy silt and silt interval (25 feet to 35 feet depth). Three monitoring wells were installed in the MW-43 pilot study area to depths of 20 feet, consistent with the depth of the injection well, MW-43S. Three additional wells were installed down gradient of the MW-43 pilot study area to depths of 30 feet, which generally coincides with the top of a silt layer in this portion of the Site.

Conduct Bench-Scale Oxidant Demand Tests

The purpose of this task was to evaluate the soil oxidant demand (SOD) for the aquifer to ensure that an adequate amount of oxidant was injected to facilitate destruction of the contaminants within the pilot study areas while minimizing the amount of residual permanganate remaining after completion of the pilot studies. Potassium permanganate and sodium permanganate, the oxidants used for the pilot studies, are strong and somewhat non-selective oxidants. Therefore, in addition to chlorinated hydrocarbons, they can oxidize other reduced soil and groundwater constituents, including natural organic carbons (e.g., humic and fulvic acids) and reduced minerals (e.g., ferrous iron). The oxidation process is a destructive process that degrades organic compounds to produce carbon dioxide and water. The SOD data, along with the observed CVOC concentrations in groundwater were used to calculate the concentration of permanganate that was injected in each study area.

To perform the SOD test, ERM collected a composite soil sample from boring MW-101 (Figure 2), including soil from both sandy and silty intervals. This boring was chosen because it was located near the MW-33 pilot study area and exhibited similar geologic characteristics. Soil samples were not collected during advancement of the CPT borings, due to the nature of this drilling technology.

The composite soil sample was submitted to ERM's Remediation Technology Group in West Chester, Pennsylvania, where the SOD test was conducted for the oxidants permanganate and persulfate. Based on varying reaction times, the permanganate test was designed to occur over a seven-day period whereas the persulfate test was designed for a 28-day period. At the completion of the permanganate test, ERM concluded that the SOD for the soil sample was very low, favoring permanganate as the preferred oxidant.

The seven-day permanganate SOD fell in the range of 0.033 to 0.068 g/kg of wet soil, which translates to a required range of 0.09 to 0.18 pounds of permanganate per cubic yard of soil (assuming a soil density of 100 pounds per cubic foot and 30% porosity). The mass of permanganate injected during the pilot studies was determined by combining the oxidant demands for native soil (i.e., SOD) and the calculated mass of CVOCs within the pilot study area. Details of the reagent application are presented below.

Establish Baseline Hydrogeochemistry

The purpose of this task was to establish baseline conditions for groundwater flow and quality within the pilot test areas prior to conducting the oxidant injections. The locations and elevations of the newly-installed monitoring wells were surveyed relative to the existing Site datum.

From 27 to 29 August 2001, ERM conducted a comprehensive groundwater monitoring round at the Site, including the 33 existing and 15 newly installed wells. Prior to sample collection, all monitoring wells were gauged using an electronic water level indicator to determine groundwater elevations. Groundwater samples were collected using a variety of sampling techniques. The 33 existing monitoring wells were sampled using either dedicated polyethylene bailers or Waterra inertialift methods. Low-flow sampling techniques were utilized for sample collection at 15 newly installed pilot study wells. Geochemical field parameters (pH, conductivity, temperature, oxidation-reduction potential and dissolved oxygen) were measured during sample collection. Groundwater sampling equipment (i.e., bailers, rope and/or tubing) was dedicated to prevent cross-contamination between monitoring points. Groundwater samples were collected from all wells for analysis of CVOCs by EPA Method 8021C. Groundwater samples

were collected from selected pilot study wells for analysis of manganese, chromium and fluoride, per the RAM Plan.

Results of the comprehensive groundwater-monitoring round are presented in Appendix D. Laboratory analytical reports are presented in Appendix F. Groundwater elevations, flow directions and chemistry were consistent with historical data for the Site. A more detailed discussion of these data relative to the post injection data is presented below.

Apply Reagent

On 6 and 7 October 2001, ERM provided oversight during the injection of sodium permanganate, potassium permanganate and sodium fluoride (tracer) at the Site. Approximately 2,500 gallons of 2% potassium permanganate along with a 50 mg/L of sodium fluoride tracer were injected at a rate of 250 gallons per hour using the PFLAI method approximately 55 feet north-northeast of the MW-33 well cluster (Figure 3). The injections were conducted at pressures ranging from 25 to 50 pounds per square inch (psi). ERM elected to inject potassium permanganate at this location rather than sodium permanganate because it is easier to handle when working with large volumes. An injection concentration of 2% potassium permanganate was determined based on the SOD and CVOC concentrations on the projected radius of influence for this portion of the Site.

Approximately 250 gallons of 4% sodium permanganate followed by 120 gallons of potable water were injected into MW-43S via the gravity feed injection technique at a rate of 25 gallons per hour. ERM elected to inject sodium permanganate at this location rather than potassium permanganate because it is easier to handle when working with small volumes. Based on the SOD and CVOC concentrations on the projected radius of influence for this portion of the Site, ERM determined that a 4% sodium permanganate solution should be adequate to treat CVOCs within and immediately down gradient of the pilot study area.

Post-Injection Groundwater Monitoring

Sixteen post-injection field parameter monitoring rounds were conducted over a three-month period (Table 1). These monitoring rounds included measurements of groundwater elevations and field parameters, and collection of groundwater samples for analysis of fluoride, a

conservative tracer used in the MW-33 pilot study area. Groundwater samples were submitted for analysis of CVOCs by EPA Method 8021C for two of these monitoring rounds:

- 12 13 November 2001: groundwater samples were collected from the MW-33 pilot study area only. Groundwater samples were not collected from the MW-43 pilot study area because visible concentrations of sodium permanganate were present in two wells.
- 10 12 December 2001: groundwater samples were collected from both pilot study areas. Visible sodium permanganate was still present in the MW-43 pilot study area, but groundwater samples were collected to evaluate groundwater quality prior to submission of this report.

Table 1 summarizes the wells and analytical parameters included in each monitoring round. Tables 3 through 5 present the monitoring results. Table 3 in Appendix D presents monitoring results for all wells at the Site. Laboratory analytical reports are presented in Appendix F.

Low flow sampling techniques were used to collect groundwater samples during the post-injection monitoring period. For well MW-33S, which had historically been sampled using a bailer, ERM collected two samples on 10 December using both bailer and low flow sampling techniques to evaluate the effect of the sampling technique on CVOC concentrations. The results of this test indicated that the type of sampling method used did not affect CVOC concentrations for this well (Table 5A).

Groundwater Elevation Data

Groundwater elevations at the Site are consistent with historical data (Appendix D, Table 1; Figure 4). The fluoride tracer data (Table 5A) were used to calculate an approximate groundwater flow velocity of 0.7 feet per day within the MW-33 pilot study area during November 2001 (Appendix E). As shown in Figures 5A and 5B, groundwater elevations in the MW-33 pilot study wells increased by approximately 0.8 feet over baseline conditions immediately following oxidant injection and steadily decreased through the December 2001 monitoring round. As shown in Table 3, the groundwater elevation in the injection well (MW-43S) increased immediately following oxidant injection. However, groundwater elevations in the other MW-43 pilot study wells decreased

following oxidant injection, indicating that the injection had no immediate hydraulic effect on these wells.

Field Observations, Field Parameter and Tracer Data

Immediately following injection in the MW-33 pilot study area, evidence of the permanganate solution was detected in well couplet MW-109/110 (i.e., based on increased conductivity and pink-purple color; Table 4), approximately 20 feet southwest of the injection point. However, no evidence of the permanganate solution was observed at well couplet MW-107/108, approximately 10 feet northeast of the injection point. Though permanganate was not observed in MW-107/108, oxidizing groundwater was noted based on elevated oxidation-reduction potentials (ORP). This suggests that permanganate either reached these wells and was rapidly consumed or that it was present in close proximity to these wells. Evidence of permanganate has not been observed in any other wells in the MW-33 pilot study area.

As noted above, immediately following injection permanganate was detected in wells MW-109/110. However, permanganate in MW-109 (deep well) was expended within approximately one week following injection whereas low levels of permanganate were still present in MW-110 (shallow well) five weeks after injection. This may be attributable to one or more of the following:

- baseline CVOC concentrations in MW-109 were higher than MW-110 (Table 5);
- different injection radii for MW-109 (deeper well screened in sandy silt and silt) and MW-110 (shallow well screened in silty sand and sand), based on differences in geology;
- finer-grained soil present around MW-109 likely exhibits higher SOD than the coarser-grained soil present at the depth of MW-110.

Immediately following injection in the MW-43 pilot study area, no evidence of permanganate was noted in any wells. Within one week after the permanganate injection, evidence of permanganate (pink to purple color and increased conductivity; Table 4) was noted in wells MW-43S and MW-104, indicating that advective, dispersive or diffusive transport of permanganate had occurred. Since mid-October, the electrical conductivity of water in these wells has steadily decreased suggesting a

decrease in permanganate concentrations over time. However, permanganate is still visibly present in both of these wells. To date, the radius of influence of the gravity feed injection was greater than five feet based on presence of permanganate in MW-104.

CVOC Data

In the MW-33 pilot study area, TCE concentrations decreased by an average of 55% through December 2001 in half of the wells sampled (MW-111, MW-112, MW-113, MW-114, MW-115 and MW-116; Table 5; Figure 6). These wells are located immediately downgradient of the permanganate injection area (i.e., radius of influence) and were not directly affected by the injection (i.e., there has been no visual or field parameter evidence to suggest that permanganate is or has been present in these wells). Therefore, it is likely that treated groundwater from within the permanganate radius of influence has migrated down gradient and mixed with untreated groundwater in the vicinity of these wells, resulting in a reduction of CVOC concentrations.

Four of the five wells (MW-107, MW-108, MW-33S and MW-33M) that exhibited increases in TCE concentrations are located outside of the permanganate radius of influence. These increases in TCE concentration are within the historical variations observed for the wells in this portion of the Site and are attributed to the lack of precipitation and groundwater recharge during the pilot study. For instance, historical variations in TCE concentrations in MW-33S have ranged from 170 micrograms per liter (μ g/L) to 530 μ g/L. During the pilot study, TCE concentrations increased from 240 μ g/L to 380 μ g/L. Concurrent with the increase in TCE at these wells, groundwater elevations in the pilot study area have decreased by approximately 0.5 feet due to a lack of groundwater recharge (Figures 5A and 5B).

However, TCE concentrations also increased in MW-109, which is located within the permanganate radius of influence. ERM believes that the concentration increase most likely resulted from desorption of TCE from clay minerals via an ion exchange-type reaction where potassium replaces the TCE, resulting in increases in dissolved phase concentrations.

In the MW-43 pilot study area, TCE concentrations decreased by an average of 75% through December 2001 in three of four wells sampled (MW-43S, MW-104 and MW-106; Table 5; Figures 6). Permanganate is

still present in MW-43S and MW-104, which both exhibit 100% decreases in TCE concentrations. MW-106 exhibits a 25% decrease in TCE concentration, which is likely attributable to the migration of treated groundwater and mixing with untreated groundwater. The increase in TCE concentration at the upgradient well, MW-105, is likely attributable to the decrease in groundwater elevations at the Site.

Summary

In analyzing the results of the pilot studies, it is evident that there are a number of interrelated processes and phenomena occurring. The importance of these processes varies with time. The following provides an interpretation of the results in light of these processes.

- 1. The first process was the injection of the permanganate solution, which was conducted under pressure using PFLAI (MW-33 pilot study area) and via gravity feed (MW-43 pilot study area). The PFLAI injection resulted in an apparent radius of influence of at least 20 feet. Gravity feed injection resulted in an apparent radius of influence of five to ten feet.
- 2. Immediately following injection, the permanganate displaced and mixed with groundwater. Direct evidence (color and increased conductivity) of permanganate was observed in wells MW-109 and MW-110 in the MW-33 pilot study area and MW-43S and MW-104 in the MW-43 pilot study area. Indirect evidence (increased ORP) was noted in wells MW-107 and MW-108 in the MW-33 pilot study area.
- 3. Permanganate reacted with oxidizable species in the soil (i.e., SOD), as well as the dissolved VOCs. In the MW-33 pilot study area, most of the permanganate was rapidly consumed. However, in the MW-43 pilot study area, the permanganate persisted. This is likely due to the higher permanganate concentration (4% v. 2%) injected in this pilot study area. Oxidizing groundwater was observed in several wells in both pilot study areas, based on increases in ORP.
- 4. Advective groundwater migration transported the treated groundwater and any residual permanganate in the down-gradient direction. Some lateral distribution also occurred due to dispersion and diffusion. The CVOC depleted groundwater mixed with unreacted groundwater, resulting in decreased CVOC concentrations but not complete elimination of CVOCs.

5. Increases in TCE concentrations were noted at some monitoring wells in the MW-33 pilot study area. These concentration variations fall within the historical range for wells in this portion of the Site. The increases are believed to be related to a significant decrease in the water table or desorption of CVOCs following oxidant injection.

B) NEW SITE INFORMATION

New Site information obtained as part of the ISCO pilot studies is discussed above in Section A.

C) MANAGEMENT OF REMEDIATION WASTE, REMEDIAL WASTEWATER AND/OR REMEDIAL ADDITIVES

Because the application of Remedial Additives to existing wells is an insitu technique, no Remediation Waste or Remediation Wastewater was generated as part of RAM activities. The application of Remedial Additives was discussed above in Section A.

D) REMEDIAL SYSTEM MONITORING DATA

Data associated with monitoring the ISCO pilot studies are discussed above in Section A. The data is also presented in the attached tables.

E) OTHER INFORMATION

Further performance groundwater sampling will be conducted to further monitor the effectiveness of the technology.

F) LSP OPINION

The LSP opinion is provided in Section J of BWSC-106 (Appendix A).

Environmental Resources Management

If the Department requires additional information or clarification, please contact either of the undersigned at (617) 267-8377.

Sincerely,

John C. Drobinski, P.G., LSP Principal-in-Charge Joe Jains

R. Joseph Fiacco, Jr., P.G. *Project Manager*

- Enclosures:
- Tables: Table 1 Chronology of RAM Activities Table 2 Monitoring Well Construction Summary Table 3 Groundwater Elevation Data Groundwater Field Parameter Data Table 4 Table 5 Groundwater Quality Data Figures: Figure 1 Site Locus Map Figure 2 Site Plan Figure 3 Groundwater Elevation Data - Shallow Wells Figure 4 Groundwater Elevation Data - Deep Wells Figure 5 **Groundwater Elevation Trends** Figure 6 **TCE** Concentration Data Appendices: Appendix A: RAM Transmittal Form BWSC-106 Appendix B: DEP Correspondence **Appendix C: Boring Logs** Appendix D: Comprehensive Groundwater Monitoring Round Data **Appendix E: Groundwater Velocity Calculations** Appendix F: Laboratory Analytical Reports
- cc: Mr. Edwin Madera, Environmental Restoration Program, Raytheon Company, 1001 Boston Post Rd., MS-1-2-1567, Marlborough, MA 01752-3789

Public Repository (Primary Location), Wayland Public Library, Louise Brown, 5 Concord Road, Wayland, MA 01778

Public Repository (Secondary Location), Board of Health, Wayland Town Hall, 41 Cochituate Road, Wayland, MA 01778

> Karen Stromberg, PIP Coordinator, MA Department of Environmental Protection, Northeast Regional Office, 205A Lowell Street, Wilmington, MA 01887

PIP Mailing List (see attached)

PIP Participant Mailing List

Jeff Ritter Executive Secretary Wayland Town Hall 41 Cochituate Road Wayland, MA 01778

Steve Calichman Board of Health Wayland Town Hall 41 Cochituate Road Wayland, MA 01778

Planning Department Wayland Town Hall 41 Cochituate Road Wayland, MA 01778

Conservation Commission Wayland Town Hall 41 Cochituate Road Wayland, MA 01778

Wastewater Management Committee Attn: Gene Roberts Wayland Town Hall 41 Cochituate Road Wayland, MA 01778

Surface Water Quality Committee Wayland Town Hall 41 Cochituate Road Wayland, MA 01778

National Parks Service Attn: Jamie Fosberg 15 State St Boston, MA 02109 Paula Phillips Wayland Business Center, LLC c/o Congress Group Ventures One Memorial Drive Cambridge, MA 02142

Patricia Abramson 5 Goodman Lane Wayland, MA 01778

Mary Antes 11 Old Farm Circle Wayland, MA 01778

Orville and Constance Bean 15 Timber Lane Wayland, MA 01778

Carol and Lawrence Glick 35 Brooks Road Wayland, MA 01778

Karl Nowak 30 Pickwick Way Wayland, MA 01778

Brian O'Herlihy 93 Sears Road Wayland, MA 01778

Mark Santangelo 15 Oak Street Wayland, MA 01778

Harvey and Linda Segal 9 Aqueduct Road Wayland, MA 01778 William W. Beck, Jr. Haley & Aldrich 465 Medford Street Suite 2200 Boston, MA 02129-1400

Amy Hosmer Raytheon 141 Spring Street Lexington, MA 02173

Louise Brown Wayland Public Library 5 Concord Road Wayland, MA 01778

J. Andrew Irwin 73 Plain Road Wayland, MA 01778

Annette Lewis 33 Claypit Hill Rd Wayland, MA 01778

Stan Robinson 9 Wheelock Road Wayland, MA 01778

Margaret T. Patton 43 Plain Road Wayland, MA 01778 Tables

Table 1 Chronology of RAM Activities Raytheon Company Wayland, Massachusetts

Date	Activity	Wells	Parameters
27-Aug-01	Groundwater Monitoring	All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area and MW-43D	Field Parameters, VOCs
5-Oct-01	Groundwater Monitoring	All Wells in MW-43 Pilot Study Area All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area	Field Parameters
6-Oct-01, 7-Oct-01	Oxidant Injection	Injection Well (MW-33 Pilot Study Area) MW-43S	-
8-Oct-01	Groundwater Monitoring	All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area	Field Parameters, Fluoride
10-Oct-01	Groundwater Monitoring	All Wells is MW-33 Pilot Study Area except MW-33M	Field Parameters, Fluoride
12-Oct-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
14-Oct-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
16-Oct-01	Groundwater Monitoring	All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area	Field Parameters, Fluoride
18-Oct-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
20-Oct-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
22-Oct-01	Groundwater Monitoring	All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area	Field Parameters, Fluoride
24-Oct-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
26-Oct-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
28-Oct-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
30-Oct-01	Groundwater Monitoring	All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area	Field Parameters, Fluoride
1-Nov-01	Groundwater Monitoring	MW-33S, MW-111, MW-112, MW-113, MW-114, MW-115, MW-116	Field Parameters, Fluoride
5-Nov-01	Groundwater Monitoring	All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area	Field Parameters, Fluoride
12-Nov-01	Groundwater Monitoring	All Wells is MW-33 Pilot Study Area	Field Parameters, Fluoride, VOCs
10-Dec-01	Groundwater Monitoring	All Wells in MW-33 Pilot StudyArea All Wells in MW-43 Pilot Study Area and MW-43D	Field Parameters, Fluoride, VOCs

Notes:

Fluoride Samples only taken at MW-33 Pilot Study Area

Field Parameters = Depth to Water, Conductivity, Oxygen Reduction Potential, Dissolved Oxygen, Temperature, Color

All Wells in MW-33 Pilot Study Area = MW-33S, MW-33M, MW-107, MW-108, MW-109, MW-110, W-111, MW-112, MW-113, MW-114, MW-115, MW-116 All Wells in MW-43 Pilot Study Area = MW-43S, MW-104, MW-105, MW-106

Table 2 Monitoring Well Construction Summary ISCO Pilot Study Wells Raytheon Company Wayland, Massachusetts

					Screened	Interval	
Well Designation	Date Installed	Ground Surface Elevation (feet ASL)	Screen Length (feet)	Total Well Depth (feet)	Bottom Elevation (feet ASL)	Top Elevation (feet ASL)	Screened Material
MW-33S	14-May-98	133.91	5	30	103.91	108.91	Silt
MW-33M	13-May-98	133.91	5	50	83.91	88.91	Sand & Silt
MW-43S	2-Nov-98	134.37	5	20	114.37	119.37	Sand & Silt
MW-43D	24-Mar-00	134.55	5	55	79.55	84.55	Till
MW-104	25-Aug-01	134.52	10	20	114.52	124.52	Sand
MW-105	25-Aug-01	134.18	10	20	114.18	124.18	Sand & Silt
MW-106	25-Aug-01	133.86	10	20	113.86	123.86	Sand & Silt
MW-107	25-Aug-01	135.01	10	35	100.01	110.01	Sand
MW-108	25-Aug-01	135.01	10	25	110.01	120.01	Sand & Silt
MW-109	25-Aug-01	134.55	10	35	99.55	109.55	Sand & Silt
MW-110	25-Aug-01	134.52	10	25	109.52	119.52	Sand & Silt
MW-111	25-Aug-01	134.27	10	35	99.27	109.27	Sand
MW-112	25-Aug-01	134.27	10	25	109.27	119.27	Sand & Silt
MW-113	25-Aug-01	134.26	10	35	99.26	109.26	Sand
MW-114	25-Aug-01	134.29	10	25	109.29	119.29	Sand & Silt
MW-115	25-Aug-01	134.25	10	35	99.25	109.25	Sand
MW-116	25-Aug-01	134.25	10	25	109.25	119.25	Sand & Silt

Notes:

ASL = Above Mean Sea Level

Table 3 Groundwater Elevation Data Raytheon Company Wayland, Massachusetts

Well ID							D	epth to Wate	er (Feet Belov	w Ground Su	rface)						
	(Baseline)																
	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Area																	
MW-104	15.96	16.01	-	-	-	16.32	-	-	16.45	-	-	-	16.64	-	16.73	-	17.14
MW-105	16.07	16.16	-	-	-	16.36	-	-	16.43	-	-	-	16.68	-	16.71	-	17.17
MW-106	15.57	16.67	-	-	-	16.79	-	-	16.93	-	-	-	17.12	-	-	-	17.53
MW-43S	16.15	15.88	-	-	-	16.06	-	-	16.23	-	-	-	16.36	-	16.48	-	16.90
MW-43D	17.35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18.36
AW-33 Pilot Study Area																	
MW-107	19.98	19.85	20.06	-	-	20.09	-	-	20.21	-	-	-	20.24	-	20.03	20.35	20.61
MW-108	22.60	20.05	20.17	-	-	20.39	-	-	20.49	-	-	-	20.59	-	20.63	20.75	20.91
MW-109	19.73	20.26	-	-	-	19.91	-	-	20.02	-	-	-	20.13	-	20.10	20.21	20.49
MW-110	19.76	19.54	-	-	-	19.82	-	-	19.94	-	-	-	20.06	-	20.15	20.26	20.41
MW-111	19.51	19.43	19.48	19.52	19.59	19.65	19.71	19.71	19.76	19.80	19.83	19.88	19.87	19.92	19.96	20.02	20.23
MW-112	19.30	19.10	19.20	19.25	19.34	19.39	19.45	19.51	19.52	19.56	19.57	19.62	19.64	19.67	19.72	19.81	19.97
MW-113	19.30	19.19	19.28	19.32	19.46	19.53	19.52	19.50	19.54	19.58	19.61	19.68	19.68	19.70	19.72	19.82	19.99
MW-114	19.21	19.06	19.17	19.21	19.27	19.32	19.36	19.42	19.45	19.48	19.49	19.55	19.56	19.59	19.63	19.72	19.90
MW-115	-	19.26	19.33	19.37	19.42	19.50	19.55	19.36	19.61	19.65	19.66	19.71	19.71	19.75	19.78	19.86	20.04
MW-116	19.50	19.37	19.46	19.48	19.50	19.62	19.68	19.70	19.74	19.81	19.80	19.86	19.85	19.91	19.92	20.01	20.17
MW-33S	19.33	19.21	19.26	19.26	19.36	19.43	19.48	19.51	19.54	19.58	19.60	19.66	19.66	19.72	19.76	19.80	20.00
MW-33M	20.22	19.76	-	-	-	19.81	-	-	19.82	-	-	-	19.86	-	19.84	19.86	19.94

Notes:

- = Not Measured
 Baseline depth to water for MW-43D was measured on 8/27/01.

Table 3 Groundwater Elevation Data Raytheon Company Wayland, Massachusetts

Well ID	Measuring Pt.								G	roundwater	Elevation ((Feet ASL)						
	Elevation	(Baseline)																
	(feet ASL)	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Area																		
MW-104	133.77	117.81	117.76	-	-	-	117.45	-	-	117.32	-	-	-	117.13	-	117.04	-	116.63
MW-105	134.29	118.22	118.13	-	-	-	117.93	-	-	117.86	-	-	-	117.61	-	117.58	-	117.12
MW-106	134.47	118.90	117.80	-	-	-	117.68	-	-	117.54	-	-	-	117.35	-	-	-	116.94
MW-43S	133.82	117.67	117.94	-	-	-	117.76	-	-	117.59	-	-	-	117.46	-	117.34	-	116.92
MW-43D	134.55	117.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	116.19
MW-33 Pilot Study Area																		
MW-107	134.87	114.89	115.02	114.81	-	-	114.78	-	-	114.66	-	-	-	114.63	-	-	114.52	114.26
MW-108	134.91	112.31	114.86	114.74	-	-	114.52	-	-	114.42	-	-	-	114.32	-	-	114.16	114.00
MW-109	134.33	114.60	114.07	-	-	-	114.42	-	-	114.31	-	-	-	114.20	-	-	114.12	113.84
MW-110	134.27	114.51	114.73	-	-	-	114.45	-	-	114.33	-	-	-	114.21	-	-	114.01	113.86
MW-111	134.10	114.59	114.67	114.62	114.58	114.51	114.45	114.39	114.39	114.34	114.30	114.27	114.22	114.23	114.18	114.14	114.08	113.87
MW-112	133.90	114.60	114.80	114.70	114.65	114.56	114.51	114.45	114.39	114.38	114.34	114.33	114.28	114.26	114.23	114.18	114.09	113.93
MW-113	133.82	114.52	114.63	114.54	114.50	114.36	114.29	114.30	114.32	114.28	114.24	114.21	114.14	114.14	114.12	114.10	114.00	113.83
MW-114	133.69	114.48	114.63	114.52	114.48	114.42	114.37	114.33	114.27	114.24	114.21	114.20	114.14	114.13	114.10	114.06	113.97	113.79
MW-115	133.80	-	114.54	114.47	114.43	114.38	114.30	114.25	114.44	114.19	114.15	114.14	114.09	114.09	114.05	114.02	113.94	113.76
MW-116	133.95	114.45	114.58	114.49	114.47	114.45	114.33	114.27	114.25	114.21	114.14	114.15	114.09	114.10	114.04	114.03	113.94	113.78
MW-33S	133.78	114.45	114.57	114.52	114.52	114.42	114.35	114.30	114.27	114.24	114.20	114.18	114.12	114.12	114.06	114.02	113.98	113.78
MW-33M	133.57	113.35	113.81	-	-	-	113.76	-	-	113.75	-	-	-	113.71	-	-	113.71	113.63

Notes:

 - = Not Measured Baseline groundwater elevation for MW-43D was measured on 8/27/01.

Well ID							Oxidation Re	duction Potenti	al (ORP) (mV)								
	(Baseline)																
	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Area																	
MW-104	266	337	-	-	-	538	-	-	655	-	-	-	653	-	638	-	646
MW-105	289	485	-	-	-	470	-	-	309	-	-	-	298	-	564	-	497
MW-106	285	396	-	-	-	433	-	-	286	-	-	-	268	-	500	-	257
MW-43S	252	404	-	-	-	542	-	-	643	-	-	-	596	-	599	-	591
MW-33 Pilot Study Area																	
MW-107	154	535	210	-	-	46	-	-	8	-	-	-	14	-	6	-65	-71
MW-108	81	635	287	-	-	268	-	-	461	-	-	-	472	-	455	366	251
MW-109	369	415	-	-	-	380	-	-	334	-	-	-	199	-	239	165	203
MW-110	237	500	-	-	-	441	-	-	645	-	-	-	618	-	561	559	207
MW-111	287	224	285	245	209	262	245	185	340	367	269	231	263	338	221	190	175
MW-112	271	222	262	221	195	238	278	206	370	384	269	275	344	364	264	293	198
MW-113	289	224	261	212	200	237	234	169	277	339	215	204	227	313	176	83	96
MW-114	268	217	237	180	176	200	231	171	340	364	268	258	313	375	264	287	203
MW-115	271	240	190	172	176	158	213	132	244	304	225	177	205	320	197	284	65
MW-116	255	237	217	146	153	131	251	179	331	376	286	285	315	412	300	260	211
MW-33S	181	233	91	101	111	55	183	231	269	349	270	261	263	439	301	296	223
MW-33M	242	245	-	-	-	106	-	-	309	-	-	-	279	-	280	-33	-133

Notes:

Well ID								Co	nductivity (n S/	cm)							
	(Baseline)																
	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Area																	
MW-104	1,721	1,573	-	-	-	2,759	-	-	2,812	-	-	-	2,265	-	2155	-	1603
MW-105	1,387	1,245	-	-	-	1,420	-	-	1,266	-	-	-	1,144	-	1140	-	1192
MW-106	753	700	-	-	-	946	-	-	978	-	-	-	952	-	900	-	1078
MW-43S	1,107	397	-	-	-	5,348	-	-	2,945	-	-	-	1,746	-	1644	-	1172
MW-33 Pilot Study Area																	
MW-107	807	785	937	-	-	917	-	-	841	-	-	-	850	-	848	797	789
MW-108	219	91	206	-	-	233	-	-	216	-	-	-	241	-	285	370	453
MW-109	428	916	-	-	-	400	-	-	384	-	-	-	390	-	412	373	407
MW-110	70	2,728	-	-	-	265	-	-	129	-	-	-	94	-	83	74	75
MW-111	276	213	252	248	239	221	206	196	205	208	198	186	197	193	195	180	179
MW-112	140	426	135	119	106	105	97	102	103	105	98	93	100	103	103	100	91
MW-113	342	278	370	365	342	336	309	301	321	330	307	287	305	311	310	288	290
MW-114	109	245	117	100	97	95	93	101	97	102	92	82	87	91	85	93	92
MW-115	325	265	341	334	320	311	271	283	299	301	283	272	290	290	293	284	297
MW-116	149	152	177	186	155	149	128	136	140	138	127	118	124	120	124	115	114
MW-33S	65	76	90	130	79	76	70	67	76	77	74	69	74	73	73	70	76
MW-33M	271	242	-	-	-	297	-	-	277	-	-	-	264	-	263	255	237

Notes:

Well ID							Disso	lved Oxygen (I	mg/L)								
	(Baseline)																
	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Area																	
MW-104	9.3	9.0	-	-	-	3.6	-	-	6.6	-	-	-	11.9	-	17.1	-	8.4
MW-105	8.4	7.2	-	-	-	2.7	-	-	2.1	-	-	-	6.7	-	12.2	-	5.9
MW-106	8.2	9.6	-	-	-	6.8	-	-	7.1	-	-	-	10.0	-	12.0	-	7.7
MW-43S	8.2	8.3	-	-	-	8.0	-	-	7.0	-	-	-	7.8	-	12.3	-	9.1
MW-33 Pilot Study Area																	
MW-107	5.6	7.4	2.7	-	-	3.5	-	-	0.9	-	-	-	2.3	-	6.2	0.3	0.3
MW-108	6.5	7.6	2.0	-	-	4.1	-	-	5.2	-	-	-	4.0	-	4.1	1.0	0.6
MW-109	4.2	6.2	-	-	-	5.8	-	-	0.9	-	-	-	1.6	-	1.9	0.2	0.2
MW-110	8.8	6.2	-	-	-	3.1	-	-	3.0	-	-	-	3.8	-	4.0	3.9	4.4
MW-111	5.2	7.3	2.8	2.7	1.6	2.8	2.7	2.7	2.3	1.5	3.0	1.4	1.9	1.8	1.8	0.6	0.2
MW-112	6.6	8.6	6.2	5.6	5.5	5.5	5.9	6.2	5.2	4.8	6.4	5.3	5.1	4.7	5.3	4.3	4.1
MW-113	6.2	6.8	1.5	2.7	1.0	1.3	1.4	3.6	1.3	1.0	1.2	1.3	1.3	1.3	1.5	0.3	0.3
MW-114	7.4	8.0	5.1	4.6	3.9	4.2	3.5	5.1	3.2	3.3	3.9	4.2	4.2	4.1	4.1	3.0	2.6
MW-115	2.0	6.2	1.6	1.4	1.4	1.0	1.5	3.4	1.1	0.9	1.2	1.5	1.9	2.1	1.5	0.3	0.2
MW-116	6.6	7.3	2.4	4.5	3.8	3.1	4.1	5.2	3.5	3.7	4.3	4.2	4.8	4.5	4.9	3.8	3.7
MW-33S	9.4	5.8	4.0	4.4	4.3	4.9	4.6	5.0	5.1	4.0	4.1	4.3	4.7	4.3	4.4	3.8	4.1
MW-33M	8.0	5.6	-	-	-	2.1	-	-	3.0	-	-	-	1.8	-	1.8	0.4	0.2

Notes:

Well ID									pH								
	(Baseline)																
	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Area																	
MW-104	7.9	7.8	-	-	-	6.9	-	-	6.8	-	-	-	7.2	-	7.3	-	7.3
MW-105	7.0	7.9	-	-	-	7.1	-	-	7.0	-	-	-	7.3	-	7.3	-	7.1
MW-106	7.7	8.1	-	-	-	7.2	-	-	7.1	-	-	-	7.3	-	7.4	-	7.7
MW-43S	7.4	7.9	-	-	-	7.5	-	-	7.3	-	-	-	7.7	-	7.7	-	7.9
MW-33 Pilot Study Area																	
MW-107	6.0	6.3	6.3	-	-	6.6	-	-	6.3	-	-	-	6.6	-	6.6	6.8	6.9
MW-108	6.5	6.9	6.3	-	-	6.1	-	-	6.3	-	-	-	6.0	-	6.1	5.7	5.8
MW-109	6.5	11.4	-	-	-	9.8	-	-	8.4	-	-	-	8.7	-	8.1	9.3	8.7
MW-110	7.4	9.8	-	-	-	6.7	-		5.8	-	-	-	6.2	-	6.1	6.0	5.9
MW-111	6.5	6.7	6.1	5.8	6.1	5.9	6.0	6.2	5.5	5.5	6.1	6.1	6.2	5.9	6.0	6.0	6.2
MW-112	6.1	6.5	6.5	6.2	6.4	6.2	6.1	6.1	5.6	5.6	6.2	6.2	6.1	5.9	6.0	5.9	5.9
MW-113	6.3	7.2	6.5	6.5	6.7	6.6	6.7	6.8	6.4	6.4	6.7	6.9	6.8	6.9	6.7	6.9	7.0
MW-114	6.5	7.2	5.9	6.1	6.1	6.1	6.3	6.3	5.5	5.7	6.1	6.2	6.0	6.0	6.0	5.9	6.0
MW-115	6.6	6.8	6.0	6.2	6.4	6.5	6.6	7.3	6.3	6.1	6.5	6.6	6.5	6.6	6.6	6.6	7.0
MW-116	6.7	7.5	5.6	6.2	6.0	6.0	6.1	6.4	5.6	5.4	5.9	6.0	5.9	6.0	6.0	5.8	5.8
MW-33S	6.1	8.0	6.0	7.3	6.8	5.9	5.9	5.8	5.7	5.6	6.3	5.9	5.6	6.2	5.8	5.6	5.8
MW-33M	6.5	6.6	-	-	-	6.8	-		6.5	-	-	-	7.0	-	7.2	7.5	7.8

Notes:

Well ID								1	emperature (°	C)							
	(Baseline)																
	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Area																	
MW-104	16.4	11.3	-	-	-	17.3	-	-	15.3	-	-	-	12.3	-	12.8	-	10.7
MW-105	16.0	12.2	-	-	-	17.0	-	-	15.4	-	-	-	13.1	-	12.8	-	11.1
MW-106	17.7	11.3	-	-	-	16.5	-	-	16.8	-	-	-	13.7	-	12.3	-	11.6
MW-43S	16.3	14.1	-	-	-	16.6	-	-	15.3	-	-	-	14.0	-	13.3	-	11.6
MW-33 Pilot Study Area																	
MW-107	17.9	12.1	17.7	-	-	17.9	-	-	17.2	-	-	-	15.1	-	13.8	14.1	13.5
MW-108	17.3	12.5	17.9	-	-	17.4	-	-	18.0	-	-	-	15.9	-	14.4	14.5	14.5
MW-109	18.4	13.4	-	-	-	16.3	-	-	15.7	-	-	-	14.5	-	13.4	14.0	13.6
MW-110	16.8	12.7	-	-	-	17.7	-	-	18.4	-	-	-	14.7	-	12.9	13.9	12.5
MW-111	18.7	11.2	16.2	17.1	15.3	16.7	14.4	14.0	15.3	16.0	13.6	12.0	13.1	14.2	12.9	12.0	11.5
MW-112	20.1	11.1	16.5	17.0	15.1	16.4	14.7	13.8	15.0	16.3	13.9	12.7	13.2	14.2	13.1	11.3	11.3
MW-113	19.0	11.5	17.8	17.2	15.2	16.4	14.7	14.5	15.6	16.8	14.2	11.6	13.3	13.9	12.5	10.3	10.3
MW-114	19.0	12.1	16.9	17.0	16.1	16.2	15.1	13.9	15.6	16.2	13.7	12.2	13.6	13.7	13.0	11.5	12.1
MW-115	18.1	10.7	17.0	16.8	15.2	15.9	12.4	14.1	15.5	16.0	13.9	12.3	13.9	13.5	13.0	11.6	11.7
MW-116	18.2	10.0	17.3	17.8	15.4	15.9	12.9	14.6	16.0	16.4	14.7	12.6	13.9	13.6	13.5	11.9	12.3
MW-33S	14.4	10.2	16.8	16.6	14.5	15.7	13.9	13.6	15.3	16.7	15.2	12.2	14.1	12.7	12.2	10.9	10.7
MW-33M	16.5	10.2	-	-	-	16.9	-	-	15.8	-	-	-	13.5	-	12.0	11.4	11.5

Notes:

Well ID									Color								
	(Baseline)																
	5-Oct-01	8-Oct-01	10-Oct-01	12-Oct-01	14-Oct-01	16-Oct-01	18-Oct-01	20-Oct-01	22-Oct-01	24-Oct-01	26-Oct-01	28-Oct-01	30-Oct-01	1-Nov-01	5-Nov-01	12-Nov-01	10-Dec-01
MW-43 Pilot Study Ared	a																
MW-104	Brown	Brown	-	-	-	Dark Pink/Purple	-	-	Dark Pink/Purple	-	-	-	Dark Pink/Purple	-	Dark Pink/Purple	-	Dark Pink/Purple
MW-105	Brown	Brown	-	-	-	Light Brown	-	-	Light Brown	-	-	-	Brown/Grey	-	Brown/Grey	-	Clear
MW-106	Brown/Grey	Brown/Grey	-	-	-	Brown	-	-	Brown	-	-	-	Brown/Grey	-	Brown/Grey	-	Clear
MW-43S	Clear	DarkPink/Purple	-	-	-	DarkPink/Purple			Dark Pink/Purple	-	-	-	Dark Pink/Purple	-	Dark Pink/Purple	-	Dark Pink/Purple
MW-33 Pilot Study Area	a				-												
MW-107	Brown/Grey	Brown/Grey	Grey	-	-	Brown/Grey	-	-	Grey	-	-	-	Grey	-	Brown/Grey	Clear	Grey
MW-108	Clear	Clear	Clear	-	-	Clear	-	-	Clear	-	-	-	Clear	-	Clear	Clear	Clear
MW-109	Brown	Dark Pink/Purple	-	-	-	Light Pink/Pink	-	-	Dark Tan/Brown	-	-	-	Grey	-	Brown/Grey	Brown/Grey	Brown
MW-110	Brown	Dark Pink/Purple	-	-	-	DarkPink	-	-	Light Pink/Pink	-	-	-	Light Pink	-	Light Pink/Brown	Light Pink	Light Brown
MW-111	Clear	Brown/Grey	Brown	Grey	Clear	Clear	Grey/Brown	Clear	Brown	Brown/Grey	Clear	Clear	Clear	Clear	Clear	Clear	Clear
MW-112	Clear	Brown	Brown	Brown	Brown	Clear	Grey	Clear	Brown	Brown/Grey	Grey	Grey	Grey	Clear	Clear	Clear	Clear
MW-113	Brown	Brown	Brown/Grey	Brown/Grey	Brown	Clear	Grey	Clear	Brown/Grey	Clear	Clear	Clear	Grey	Clear	Brown/Grey	Brown/Grey	Brown
MW-114	Brown	Brown/Grey	Brown/Grey	Clear	Brown	Clear	Clear	Clear	Brown/Grey	Clear	Clear	Brown	Grey	Clear	Brown/Grey	Clear	Clear
MW-115	Brown	Clear	Brown/Grey	Clear	Clear	Clear	Clear	Clear	Brown/Grey	Clear	Clear	Brown	Clear	Clear	Clear	Clear	Clear
MW-116	Clear	Clear	Brown/Grey	Clear	Clear	Clear	Clear	Clear	Brown/Grey	Clear	Clear	Brown	Clear	Clear	Clear	Clear	Clear
MW-33S	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear
MW-33M	Clear	Brown/Grey	-	-	-	Clear	-	-	Clear	-	-	-	Clear	-	Clear	Clear	Clear

Notes:

	Sample I.D.	Method 1 GW-1	MW-33S	MW-33S	MW-33S	MW-33S	MW-33S
	Date Sampled	Cleanup Standard	27-Aug-01	05-Nov-01	12-Nov-01	10-Dec-01	10-Dec-01
Parameter	Comments	(n g/L)				low-flow	bailer
Organics							
Volatile Organic Compounds (VOCs) (µg/l)			NA			
Trichloroethene		5	240		380	360	350
cis-1,2-Dichloroethene		70	-		-	-	-
1,1,1-Trichloroethane		200	78		120	110	110
1,1-Dichloroethene		7	-		-	-	-
Inorganics Dissolved Metals (mg/L)				NA	NA	NA	NA
Manganese		NS	0.01				
Chromium (III)		100	-				
Other Ions							
Fluoride (mg/L)		NS	0.39	-	-	-	-
Field Parameters							
pH		NS	6.0	5.8	5.6	5.8	5.8
Conductivity (mS/cm)		NS	76	73	70	76	85
Temperature (°C)		NS	13.3	12.2	10.9	10.7	11.8
Oxidation Reduction Potentia	ıl (mV)	NS	307	301	296	223	123
Dissolved Oxygen (mg/L)		NS	6.5	4.4	3.8	4.1	4.9
Color		NS	Brown	Clear	Clear	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \ per \ liter \ (parts \ per \ billion \ (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001.

	le I.D. Method 1 GW-1	MW-33M	MW-33M	MW-33M	MW-33M
	mpled Cleanup Standard	27-Aug-01	05-Nov-01	12-Nov-01	10-Dec-01
Parameter Com	ments (ng/L)				
Organics					
Volatile Organic Compounds (VOCs) (µ	g/l)		NA		
Trichloroethene	5	3.1		8.6	9.3
cis-1,2-Dichloroethene	70	-		0.97	0.69
1,1,1-Trichloroethane	200	-		-	-
1,1-Dichloroethene	7	-		-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA
Manganese	NS	0.73			
Chromium (III)	100	-			
Other Ions					
Fluoride (mg/L)	NS	0.28	-	-	-
Field Parameters					
pH	NS	6.7	7.2	7.5	7.8
Conductivity (mS/cm)	NS	215	263	237	237
Temperature (°C)	NS	17.9	12.0	11.4	11.5
Oxidation Reduction Potential (mV)	NS	188	280	-33	-1,328
Dissolved Oxygen (mg/L)	NS	5.0	1.8	0.4	0.2
Color	NS	Grey	Clear	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \ per \ liter \ (parts \ per \ billion \ (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001.

Sample I.D.	Method 1 GW-1	MW-107	MW-107	MW-107	MW-107	MW-107	MW-107
Date Sampled	Cleanup Standard	28-Aug-01	08-Oct-01	16-Oct-01	05-Nov-01	13-Nov-01	11-Dec-01
Parameter Comments	(n g/L)						
Organics							
Volatile Organic Compounds (VOCs) (µg/l)			NA	NA	NA		
Trichloroethene	5	34				65	68
cis-1,2-Dichloroethene	70	2.0				3.4	2.6
1,1,1-Trichloroethane	200	-				-	-
1,1-Dichloroethene	7	-				-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA
Manganese	NS	3.3					
Chromium (III)	100	-					
Other Ions							
Fluoride (mg/L)	NS	1.6	0.45	-	0.62	0.36	0.73
Field Parameters							
pH	NS	6.8	6.3	6.6	6.6	6.8	6.9
Conductivity (mS/cm)	NS	592	785	917	848	797	789
Temperature (°C)	NS	17.1	12.1	17.9	13.8	14.1	13.5
Oxidation Reduction Potential (mV)	NS	-438	535	46	6	-65	-71
Dissolved Oxygen (mg/L)	NS	1.0	7.4	3.5	6.2	0.3	0.3
Color	NS	-	Brown/Grey	Brown/Grey	Brown/Grey	Clear	Grey

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \; per \; liter \; (parts \; per \; billion \; (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001. Analytical results are not representative of ambient

Sample I.D.	Method 1 GW-1	MW-108	MW-108	MW-108	MW-108	MW-108	MW-108
Date Sampled	Cleanup Standard	28-Aug-01	08-Oct-01	16-Oct-01	05-Nov-01	13-Nov-01	11-Dec-01
Parameter Comments	(n g/L)						
Organics							
Volatile Organic Compounds (VOCs) (µg/l)			NA	NA	NA		
Trichloroethene	5	1.4				3.7	4.6
cis-1,2-Dichloroethene	70	-				-	-
1,1,1-Trichloroethane	200	-				-	-
1,1-Dichloroethene	7	-				-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA
Manganese	NS	1.7					
Chromium (III)	100	-					
Other Ions Fluoride (mg/L)	NS	-	-	-	-	-	-
Field Parameters							
рН	NS	5.7	6.9	6.1	6.1	5.7	5.8
Conductivity (mS/cm)	NS	159	91	233	285	370	453
Temperature (°C)	NS	17.8	12.5	17.4	14.4	14.5	14.5
Oxidation Reduction Potential (mV)	NS	100	635	268	455	366	251
Dissolved Oxygen (mg/L)	NS	1.1	7.6	4.1	4.1	1.0	0.6
Color	NS	Clear	Clear	Clear	Clear	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \ per \ liter \ (parts \ per \ billion \ (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001.

Sample I.D.	Method 1 GW-1	MW-109	MW-109	MW-109	MW-109	MW-109	MW-109
Date Sampled	Cleanup Standard	28-Aug-01	08-Oct-01	16-Oct-01	05-Nov-01	13-Nov-01	11-Dec-01
Parameter Comments	(ng/L)	_					
Organics							
Volatile Organic Compounds (VOCs) (µg/l)			NA	NA	NA		
Trichloroethene	5	18				26	35
cis-1,2-Dichloroethene	70	1.6				2.0	2.3
1,1,1-Trichloroethane	200	-				-	-
1,1-Dichloroethene	7	-				-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA
Manganese	NS	1.5					
Chromium (III)	100	-					
Other Ions							
Fluoride (mg/L)	NS	0.55	4.4	2.6	2.2	0.45	2.6
Field Parameters							
pH	NS	6.5	11.4	9.8	8.1	9.3	8.7
Conductivity (mS/cm)	NS	271	916	400	412	373	407
Temperature (°C)	NS	17.5	13.4	16.3	13.4	14.0	13.6
Oxidation Reduction Potential (mV)	NS	-151	415	380	239	165	203
Dissolved Oxygen (mg/L)	NS	1.2	6.2	5.8	1.9	0.2	0.2
Color	NS	-	Purple	Pink	Brown/Grey	Brown/Grey	Brown

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \; per \; liter \; (parts \; per \; billion \; (ppb))$

GW samples were collected during step drawdown tests for well MW-33S on August 27, 2001.

Sample I.D.	Method 1 GW-1	MW-110	MW-110	MW-110	MW-110	MW-110	MW-110
Date Sampled	Cleanup Standard	28-Aug-01	08-Oct-01	16-Oct-01	05-Nov-01	13-Nov-01	11-Dec-01
Parameter Comments	(ng/L)	_					
Organics							
Volatile Organic Compounds (VOCs) (µg/l)		-	NA	NA	NA	-	-
Trichloroethene	5						
cis-1,2-Dichloroethene	70						
1,1,1-Trichloroethane	200						
1,1-Dichloroethene	7						
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA
Manganese	NS	0.24					
Chromium (III)	100	-					
Other Ions							
Fluoride (mg/L)	NS	0.32	7.9	2.4	0.66	0.43	0.44
Field Parameters							
pH	NS	5.9	9.8	6.7	6.1	6.0	5.9
Conductivity (mS/cm)	NS	72	2728	265	83	74	75
Temperature (°C)	NS	16.6	12.7	17.7	12.9	13.9	12.5
Oxidation Reduction Potential (mV)	NS	110	500	441	561	559	207
Dissolved Oxygen (mg/L)	NS	5.0	6.2	3.1	4.0	3.9	4.4
Color	NS	-	Purple	Pink	Light Pink	Pink/Brown	Brown

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \; per \; liter \; (parts \; per \; billion \; (ppb))$

GW samples were collected during step drawdown tests for well MW-33S on August 27, 2001.

Sample I.D.	Method 1 GW-1	MW-111	MW-111	MW-111	MW-111	MW-111	MW-111
Date Sampled	Cleanup Standard	28-Aug-01	14-Oct-01	24-Oct-01	05-Nov-01	13-Nov-01	11-Dec-01
Parameter Comments	(ng/L)						
Organics							
Volatile Organic Compounds (VOCs) (µg/l)			NA	NA	NA		
Trichloroethene	5	70				9.3	6.6
cis-1,2-Dichloroethene	70	-				-	-
1,1,1-Trichloroethane	200	24				2	-
1,1-Dichloroethene	7	0.72				-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA
Manganese	NS	1.1					
Chromium (III)	100	-					
Other Ions Fluoride (mg/L)	NS	0.48					
Fuonde (mg/L)	115	0.40	-	-	-	-	-
Field Parameters							
pH	NS	6.0	6.1	5.5	6.0	6.0	6.2
Conductivity (mS/cm)	NS	239	239	208	195	180	179
Temperature (°C)	NS	16.0	15.3	16.0	12.9	12.0	11.5
Oxidation Reduction Potential (mV)	NS	-434	209	367	221	190	175
Dissolved Oxygen (mg/L)	NS	0.8	1.6	1.5	1.8	0.6	0.2
Color	NS	-	Brown/Grey	Clear	Clear	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \ per \ liter \ (parts \ per \ billion \ (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001.

	Method 1 GW-1	MW-112	MW-112	MW-112	MW-112	MW-112	MW-112
Date Sampled	Cleanup Standard	28-Aug-01	14-Oct-01	24-Oct-01	05-Nov-01	13-Nov-01	11-Dec-01
Parameter Comments	(ng/L)						
Organics							
Volatile Organic Compounds (VOCs) (µg/l)			NA	NA	NA		
Trichloroethene	5	82				47	37
cis-1,2-Dichloroethene	70	-				-	-
1,1,1-Trichloroethane	200	29				15	12
1,1-Dichloroethene	7	-				-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA
Manganese	NS	0.13					
Chromium (III)	100	-					
Other Ions							
Fluoride (mg/L)	NS	-	-	-	-	-	-
Field Parameters							
рН	NS	6.1	6.4	5.6	6.0	5.9	5.9
Conductivity (mS/cm)	NS	324	106	105	103	100	91
Temperature (°C)	NS	16.2	15.1	16.3	13.1	11.3	11.3
Oxidation Reduction Potential (mV)	NS	161	195	384	264	293	198
Dissolved Oxygen (mg/L)	NS	6.2	5.5	4.8	5.3	4.3	4.1
Color	NS	-	Brown	Clear	Clear	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \ per \ liter \ (parts \ per \ billion \ (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001.

	Method 1 GW-1	MW-113	MW-113	MW-113	MW-113	MW-113	MW-113	MW-113
_	Cleanup Standard	29-Aug-01	12-Oct-01	24-Oct-01	05-Nov-01	12-Nov-01	11-Dec-01	
Parameter Comments	(n g/L)							DUP-1
Organics								
Volatile Organic Compounds (VOCs) (µg/l)			NA	NA	NA			
Trichloroethene	5	24				14	14	12
cis-1,2-Dichloroethene	70	-				0.9	0.71	-
1,1,1-Trichloroethane	200	6.5				0.55	-	-
1,1-Dichloroethene	7	-				-	-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA	NA
Manganese	NS	1.5		1.11	1.1.1	1.1.1		
Chromium (III)	100	-						
Other Ions								
Fluoride (mg/L)	NS	-	-	-	-	-	-	-
Field Parameters								
pH	NS	6.1	6.5	6.4	6.7	6.9	7.0	7.0
Conductivity (mS/cm)	NS	306	365	330	310	288	290	290
Temperature (°C)	NS	16.3	17.2	16.8	12.5	10.3	10.3	10.3
Oxidation Reduction Potential (mV)	NS	-410	212	339	176	83	96	96
Dissolved Oxygen (mg/L)	NS	0.4	2.7	1.0	1.5	0.3	0.3	0.3
Color	NS		Brown	Clear	Brown/Grey	Brown/Grey	Brown	Brown

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \; per \; liter \; (parts \; per \; billion \; (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001.

Table 5A Groundwater Quality Data MW-33 Pilot Study Area Raytheon Company Wayland, Massachusetts

	Sample I.D.	Method 1 GW-1	MW-114	MW-114	MW-114	MW-114	MW-114	MW-114
	Date Sampled	Cleanup Standard	28-Sep-01	14-Oct-01	24-Oct-01	05-Nov-01	12-Nov-01	10-Dec-01
Parameter	Comments	-	-					
Organics								
Volatile Organic Compounds (V	'OCs) (µg/l)			NA	NA	NA		
Trichloroethene		5	23				24	14
cis-1,2-Dichloroethene		70	-				-	-
1,1,1-Trichloroethane		200	5.5				8.4	4.2
1,1-Dichloroethene		7	-				-	-
Inorganics Dissolved Metals (mg/L)				NA	NA	NA	NA	NA
Manganese		NS	1.7	1.1.1		1.1.1	1.1.1	
Chromium (III)		100	-					
Other Ions								
Fluoride (mg/L)		NS	-	-	-	-	-	-
Field Parameters								
pH		NS	6.7	6.1	5.7	6.0	5.9	6.0
Conductivity (mS/cm)		NS	139	97	102	85	93	92
Temperature (°C)		NS	14.5	16.1	16.2	13.0	11.5	12.1
Oxidation Reduction Potential	(mV)	NS	-197	176	364	264	287	203
Dissolved Oxygen (mg/L)		NS	2.1	3.9	3.3	4.1	3.0	2.6
Color		NS	-	Brown/Grey	Clear	Brown/Grey	Brown/Grey	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \ per \ liter \ (parts \ per \ billion \ (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001. Analytical results are not representative of ambient

Table 5A Groundwater Quality Data MW-33 Pilot Study Area Raytheon Company Wayland, Massachusetts

	Method 1 GW-1	MW-115	MW-115	MW-115	MW-115	MW-115	MW-115
Date Sampleo	l Cleanup Standard	29-Aug-01	14-Oct-01	24-Oct-01	05-Nov-01	12-Nov-01	10-Dec-01
Parameter Comments	s (ng/L)						
Organics							
Volatile Organic Compounds (VOCs) (µg/l)			NA	NA	NA		
Trichloroethene	5	81				60	41
cis-1,2-Dichloroethene	70	-				-	-
1,1,1-Trichloroethane	200	24				17	10
1,1-Dichloroethene	7	-				-	-
Inorganics Dissolved Metals (mg/L)			NA	NA	NA	NA	NA
Manganese	NS	1.7					
Chromium (III)	100	-					
Other Ions							
Fluoride (mg/L)	NS	-	-	-	-	-	-
Field Parameters							
pH	NS	6.3	6.4	6.1	6.6	6.6	7.0
Conductivity (mS/cm)	NS	315	320	301	293	284	297
Temperature (°C)	NS	16.4	15.2	16.0	13.0	11.6	11.7
Oxidation Reduction Potential (mV)	NS	-480	176	304	197	284	65
Dissolved Oxygen (mg/L)	NS	1.5	1.4	0.9	1.5	0.3	0.2
Color	NS		Clear	Clear	Clear	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \; per \; liter \; (parts \; per \; billion \; (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001. Analytical results are not representative of ambient

Table 5A Groundwater Quality Data MW-33 Pilot Study Area Raytheon Company Wayland, Massachusetts

	Sample I.D.	Method 1 GW-1	MW-116	MW-116	MW-116	MW-116	MW-116	DUP-1	MW-116
	Date Sampled	Cleanup Standard	28-Aug-01	14-Oct-01	24-Oct-01	05-Nov-01	12-Nov-01	12-Nov-01	10-Dec-01
Parameter	Comments		0						
Organics									
Volatile Organic Compounds (V	OCs) (µg/l)			NA	NA	NA			
Trichloroethene		5	180				130	120	81
cis-1,2-Dichloroethene		70	-				-	-	-
1,1,1-Trichloroethane		200	64				44	39	26
1,1-Dichloroethene		7	-				-	-	-
Inorganics Dissolved Metals (mg/L)				NA	NA	NA	NA	NA	NA
Manganese		NS	0.41						
Chromium (III)		100	-						
Other Ions									
Fluoride (mg/L)		NS	-	-	-	-	-	-	0.29
Field Parameters									
pH		NS	5.8	6.0	5.4	6.0	5.8	5.8	5.8
Conductivity (mS/cm)		NS	122	155	138	124	115	115	114
Temperature (°C)		NS	17.4	15.4	16.4	13.5	11.9	11.9	12.3
Oxidation Reduction Potential	(mV)	NS	58	153	376	300	260	260	211
Dissolved Oxygen (mg/L)		NS	2.9	3.8	3.7	4.9	3.8	3.8	3.7
Color		NS	-	Clear	Clear	Clear	Clear	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

 $\mu g/l{=}micrograms \ per \ liter \ (parts \ per \ billion \ (ppb))$

GW samples were collected during step drawdown

tests for well MW-33S on August 27, 2001.

Table 5B Groundwater Quality Data MW-43 Pilot Study Area Raytheon Company Wayland, Massachusetts

Sample I.I	0. Method 1 GW-1	MW-43S	MW-43S	MW-43D	MW-43D
	d Cleanup Standard	27-Aug-01	12-Dec-01	27-Aug-01	12-Dec-01
Parameter Comment	s (n g/L))		0	
Organics					
Volatile Organic Compounds (VOCs) (µg/l)			-	-	-
Tetrachloroethene	5	5.8			
Trichloroethene	5	290			
cis-1,2-Dichloroethene	70	-			
Bromoform	5	-			
Inorganics Dissolved Metals (mg/L)			NA	NA	NA
Dissolved Metals (mg/L) Chromium (III)	100	0.01	INA	INA	INA
	NS				
Manganese	IND	-			
Other Ions					
Fluoride (mg/L)	NS	1.2	NA	NA	NA
Field Parameters					
рН	NS	7.3	7.9	7.7	7.8
Conductivity (mS/cm)	NS	965	1,172	353	292
Temperature (°C)	NS	15.9	11.6	18.1	9.8
Oxidation Reduction Potential (mV)	NS	308	591	283	3,968
Dissolved Oxygen (mg/L)	NS	8.8	9.1	5.5	2.7
Color	NS	Brown	Purple	Brown/Grey	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

µg/l=micrograms per liter (parts per billion (ppb))

GW samples were collected during step drawdown

tests for well MW-43S on August 27, 2001.

Table 5B Groundwater Quality Data MW-43 Pilot Study Area Raytheon Company Wayland, Massachusetts

	Sample I.D.	Method 1 GW-1	MW-106	MW-106
D	-	Cleanup Standard	27-Aug-01	12-Dec-01
– Parameter	Comments	-	8	
Organics				
Volatile Organic Compounds (VOCs	$(\mu g/l)$			
Tetrachloroethene		5	3.3	-
Trichloroethene		5	160	120
cis-1,2-Dichloroethene		70	-	-
Bromoform		5	-	-
Inorganics Dissolved Metals (mg/L)				NA
Chromium (III)		100	-	
Manganese		NS	0.52	
Other Ions Fluoride (mg/L)		NS	0.3	NA
Field Parameters				
pH		NS	7.3	7.2
Conductivity (mS/cm)		NS	949	1,078
Temperature (°C)		NS	18.1	11.6
Oxidation Reduction Potential (mV	/)	NS	-37	257
Dissolved Oxygen (mg/L)		NS	8.5	7.7
Color		NS	Clear	Clear

Notes:

- = Analytical result below the method detection limit.

NA = Not Analyzed

NS = No Standard

µg/l=micrograms per liter (parts per billion (ppb))

GW samples were collected during step drawdown

tests for well MW-43S on August 27, 2001.

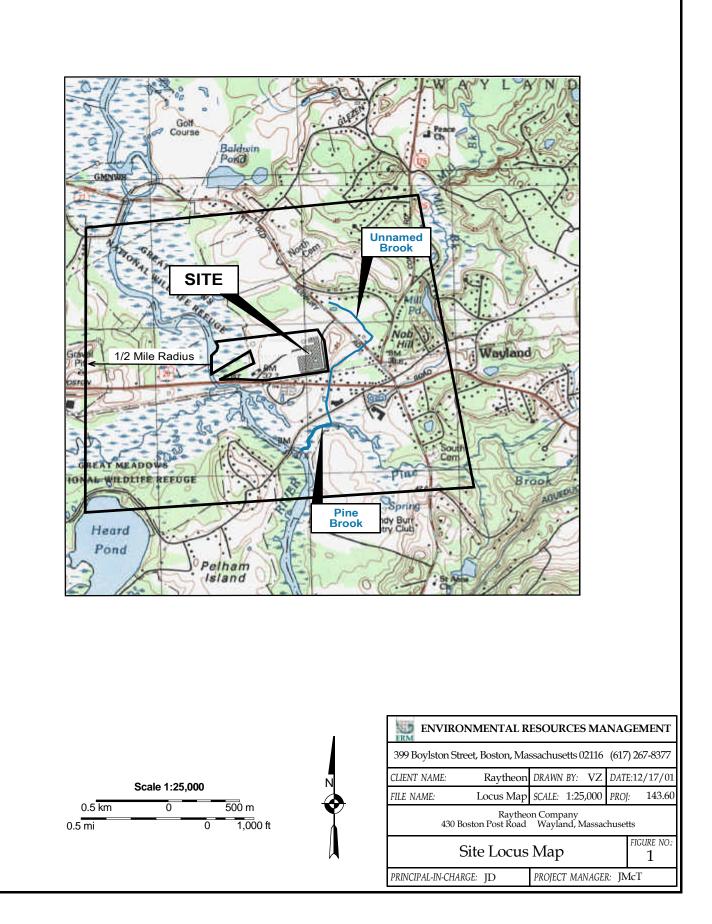
Table 5B Groundwater Quality Data MW-43 Pilot Study Area Raytheon Company Wayland, Massachusetts

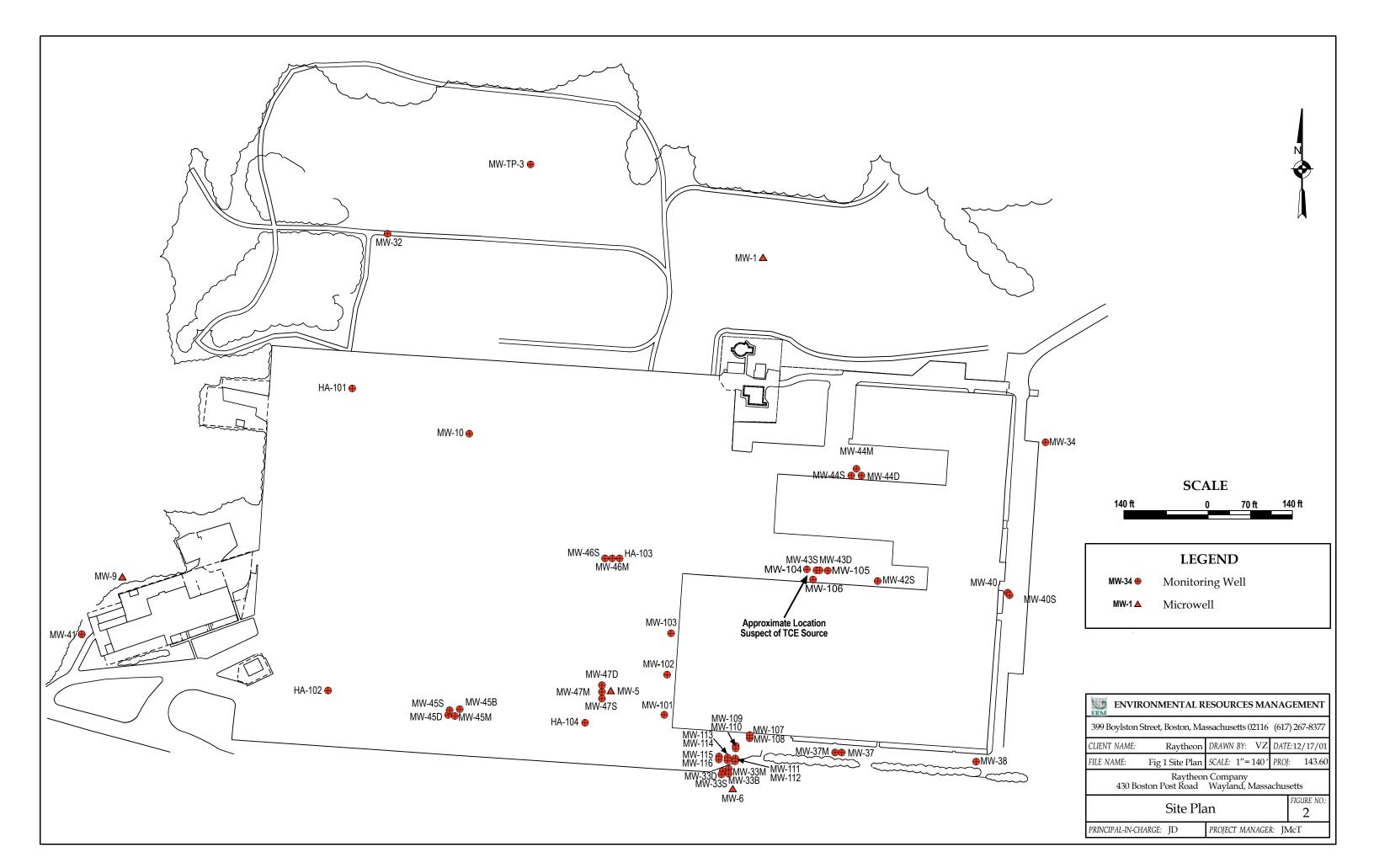
Sample I.D.	Method 1 GW-1	MW-104	MW-104	MW-105	DUP-1	MW-105
Date Sampled	Cleanup Standard	27-Aug-01	12-Dec-01	27-Aug-01	27-Aug-01	12-Dec-01
Parameter Comments	(n g/L)					
Organics						
Volatile Organic Compounds (VOCs) (µg/l)						
Tetrachloroethene	5	-	-	1.8	1.8	-
Trichloroethene	5	290	-	60	66	82
cis-1,2-Dichloroethene	70	-	-	12	12	1.6
Bromoform	5	-	34	-	-	-
Inorganics Dissolved Metals (mg/L)			NA			NA
Chromium (III)	100	_		_		1111
Manganese	NS	0.58		0.76	0.82	
Other Ions						
Fluoride (mg/L)	NS	0.43	NA	0.73	0.76	NA
Field Parameters						
рН	NS	7.0	7.3	7.2	7.2	7.1
Conductivity (mS/cm)	NS	1,226	1,603	1,278	1,278	1,192
Temperature (°C)	NS	17.6	10.7	17.5	17.5	11.1
Oxidation Reduction Potential (mV)	NS	-71	646	-517	-517	497
Dissolved Oxygen (mg/L)	NS	8.9	8.4	5.2	5.2	5.9
Color	NS	Clear	Dark Pink	Clear	Clear	Clear

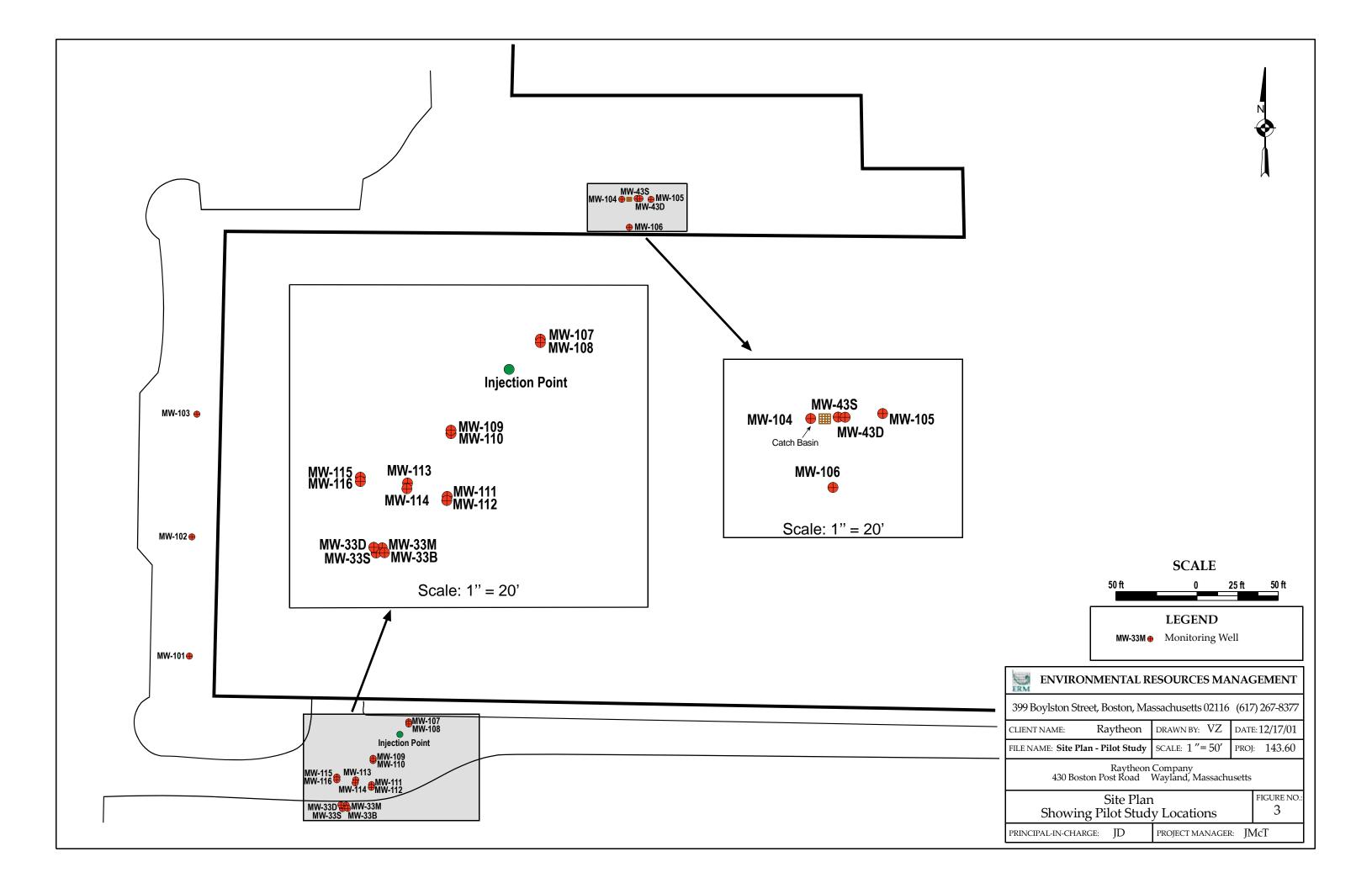
Notes:

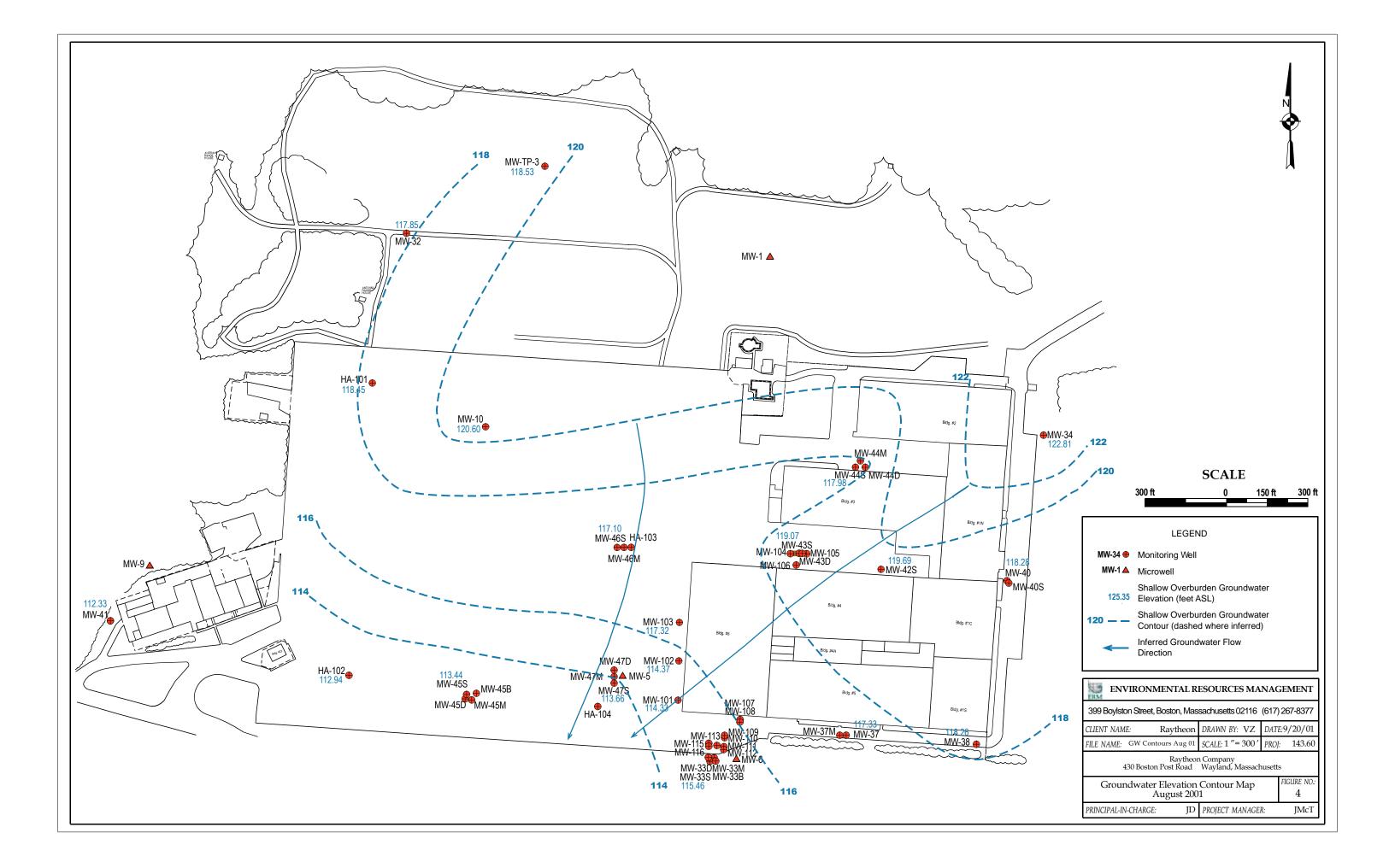
- = Analytical result below the method detection limit.

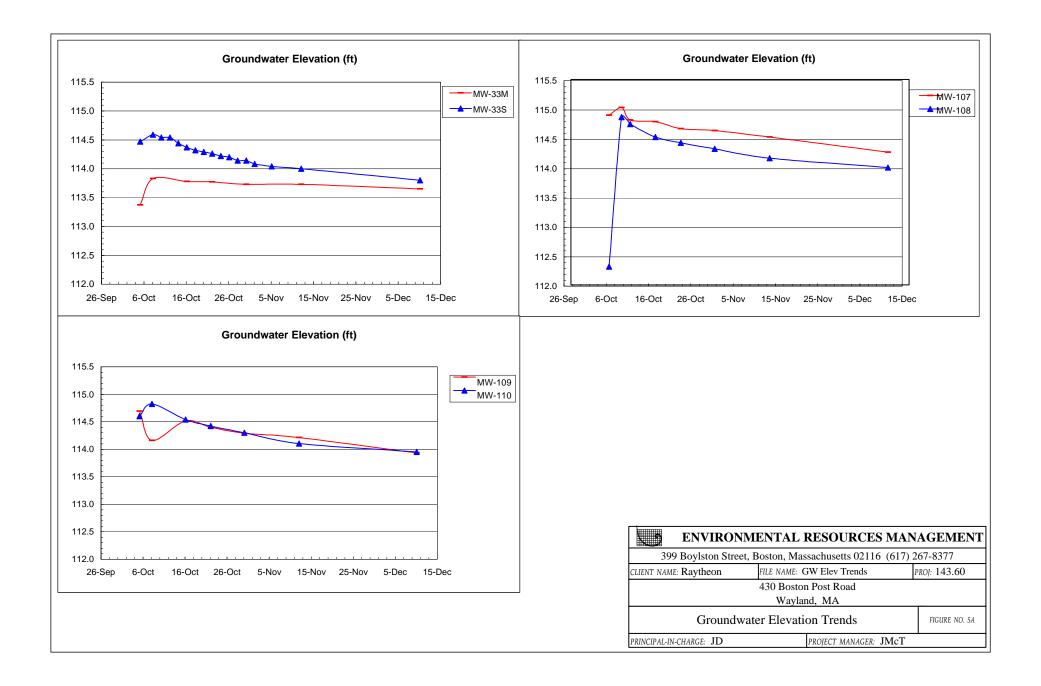
NA = Not Analyzed

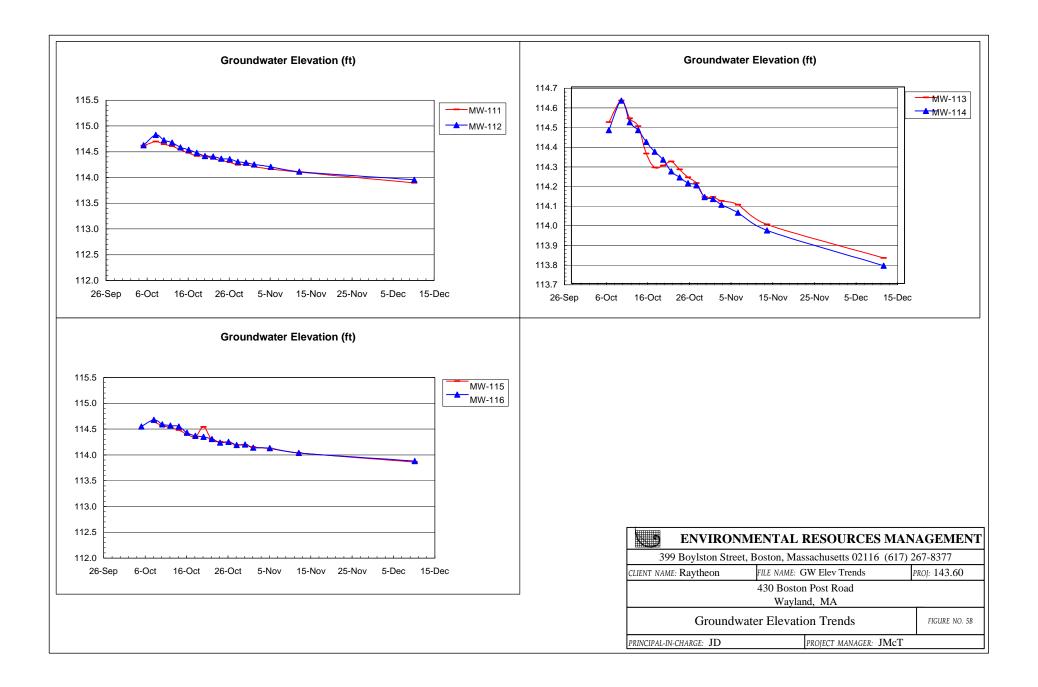

NS = No Standard

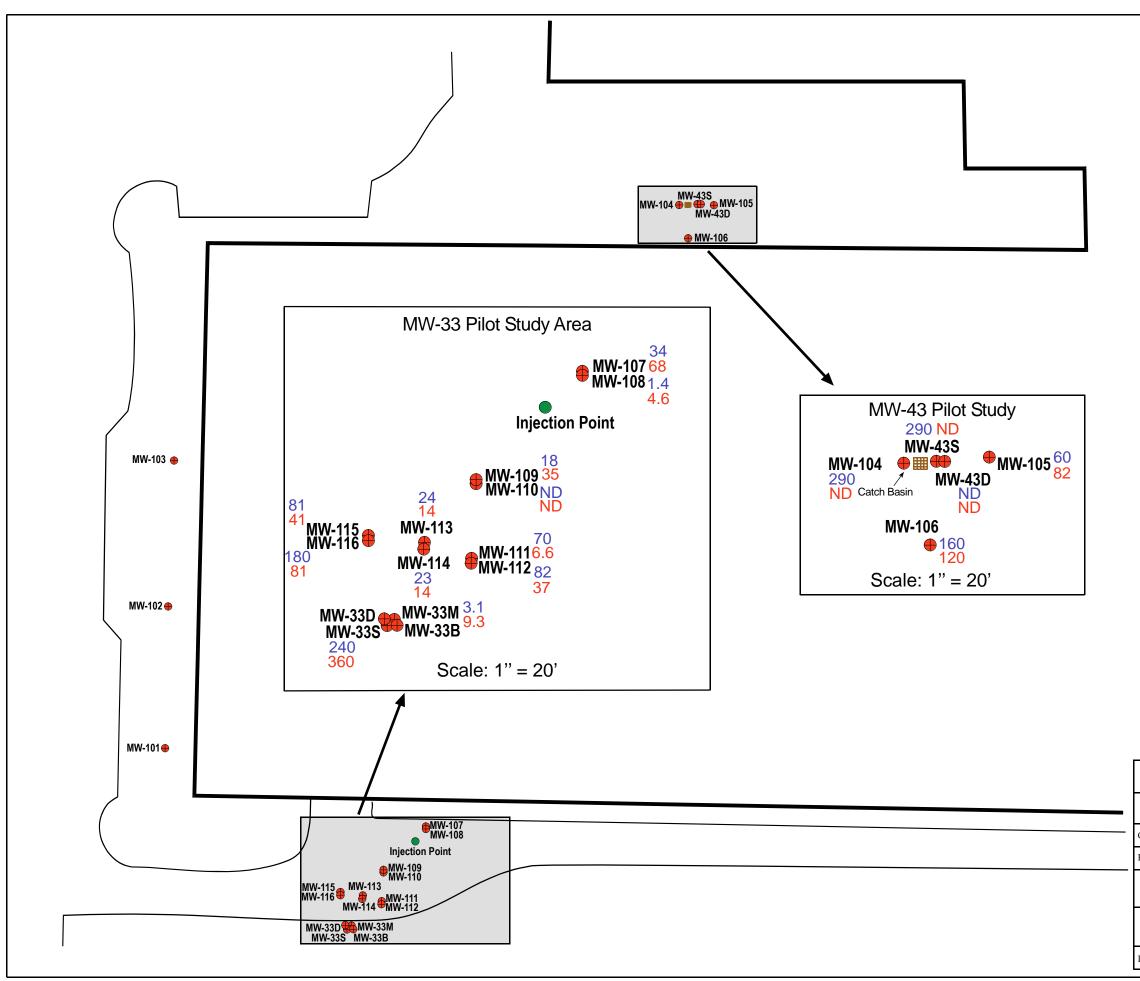

µg/l=micrograms per liter (parts per billion (ppb))


GW samples were collected during step drawdown


tests for well MW-43S on August 27, 2001.


Figures





	50 ft	SCALE 0	25 ft 50 ft	
		LEGEND		
	MW-33M 🖶 Mo	onitoring Well		
	70 Ba	seline TCE Conce	ntration (ug/L)	
		ecember 2001 TCE oncentration (ug/L		
ENVIRON	IMENTAL R	ESOURCES MA	NAGEMENT	
399 Boylston Street, Boston, Massachusetts 02116 (617) 267-8377				
CLIENT NAME:	Raytheon	DRAWN BY: VZ	date: 12/17/01	
FILE NAME: TCE Co	ncentrations	SCALE: 1 "= 50'	proj: 143.60	
430 Bosto	Raytheon n Post Road	Company Wayland, Massachı	ısetts	
TCE C	Concentrat	ion Data	FIGURE NO.: 6	
PRINCIPAL-IN-CHARC	ge: JD	PROJECT MANAGER	e JMcT	

Appendix A RAM Transmittal Form BWSC-106

Massachusetts Department of En Bureau of Waste Site Cleanup	vironmental Protection	BWSC-106
RELEASE & UTILITY-RELATED A MEASURE (RAM & URAM) TRANS Pursuant to 310 CMR 40.0444 - 0446 and 310 CMR	SMITTAL FORM	Release Tracking 3 - 13574
A. SITE LOCATION:		····
Site Name: Former Raytheon Facility		
Street: 430 Boston Post Road	Location Aid: Route 20	
City/Town: <u>Wayland</u>	ZIP 01778-0000	
Check here if a Tier Classification Submittal has been provided to DEP for	or this Release Tracking Number.	
Related Release Tracking Numbers That This RAM or URAM		
B. THIS FORM IS BEING USED TO: (check all that apply)		
Submit a RAM Plan (complete Sections A, B, C, D, E, F, J, K, L and M). Check here it this RAM Plan is an update or modification of a previous Plan.		:
Submit a RAM Status Report (complete Sections A, B, C, E, J, K, L and	ј М).	
Submit a RAM Completion Statement (complete Sections A, B, C, D, E	E, G, J, K, L and M).	
Confirm or Provide URAM Notification (complete Sections A, B, H, K, L	and M).	
Submit a URAM Status Report (complete Sections A, B, C, E, J, K, L a	nd M).	
Submit a URAM Completion Statement (complete Sections A, B, C, D, You must attach all supporting documentation required any Legal Notices and Notices to Public C	I for each use of form indicated, including co	opies of
C. SITE CONDITIONS:		· · · · · · · · · · · · · · · · · · ·
Check here if the source of the Release or Threat of Release is known.		
If yes, check all sources that apply: UST Pipe/Hose/Line	AST Drums Transfor	mer 🗌 Boat
🗌 Tanker Truck 🗌 Vehicle 🚺 Other Specify: <u>former</u>	manhole	
Identify Media and Receptors Affected: (check all that	Groundwater 🔄 Surface Water 🗌 Sedin	ments 🗌 Soil
Wetlands Storm Drain Private Scindard Unknown Other	te Well 📄 Public Water Supply 🚽 Zo	ne 2 Residence
Identify Release and/or Threat of Release Conditions at Site: (check all that	at apply)	
2 and 72 Hour Reporting Condition(s) 120 Day Report	ing Condition(s) Other Condition(s	5)
Describe Groundwater concentrations above app	licable reportable concentrat	tions
RAMs may be conducted concurrently with an		
URAMs may not be conducted if any 2 or 72 Identify Oils and Hazardous Materials Released: (check all that		Heavy Metals
Others Specify:	Solvente	(
D. DESCRIPTION OF RESPONSE ACTIONS: (check all that appl)		· · · · · · · · · · · · · · · · · · ·
Assessment and/or Monitoring Only	Deployment of Absorbant of Materials	Containment
Excavation of Contaminated Soils	Temporary Covers or Caps	
Re-use, Recycling or Treatment	Bioremediation	
On Site Off Site Est. Vol.: cub	vic yards Soil Vapor Extraction	
Describe:	"Na ann anna"	
Store On Site Off Site Est. Vol.:cub	ic vards Product or NAML	
SECTION D IS CONTINUED		
Revised 2/24/95 Supersedes Forms BWSC-007, Do Not Alter TI		Page 1 of 4

	Massachusetts Department of Environm Bureau of Waste Site Cleanup	ental Protection	BWSC-106
D E P	RELEASE & UTILITY-RELATED ABATEM MEASURE (RAM & URAM) TRANSMITTA Pursuant to 310 CMR 40.0444 - 0446 and 310 CMR 40.0	LFORM	Release Tracking 3 - 13574
D. DESCRIPTION	OF RESPONSE ACTIONS (continued):		
Landfill	O Cover O Disposal Est. Vol.: cubic yards	Grounowater i reatmer	าเ
Removal of Dru	ums, Tanks or Containers	Air Sparging	
Describe:		Temporary Water Sup	plies
Removal of Oth	ner Contaminated Media	Temporary Evacuation	or Relocation of Residents
Specify Type a	nd	Fencing and Sign Post	lina
Other Response	e Actions Describe		-
Check here if th	See 310 CMR 40.0442 for limitations on the se See 310 CMR 40.0464 for performance sta is RAM or URAM involves the use of Innovative Technologies. DE	cope and type of RAMs. andards for URAMs.	
	echnologies Clearinghouse.		
	OF REMEDIATION WASTE: (if Remediation Waste has been	sent to an off site facility as a	ar the following
		-	er me ronowing
	'A		
F. RAM PLAN:	ation Waste Transported to <u>N/A</u>		
Check here if the	his RAM Plan received previous oral approval from DEP as a contir	nuation of a Limited Removal Act	iion (LRA).
Date of Oral			
payment. See 3	bliance Fee is required, check here to certify that the fee has been s 310 CMR 40.0444(2) to learn when a fee is not required. he RAM Plan is proposed for a Transition Site. If this is the case, y		
	king the RAM, if not previously provided. See 310 CMR 40.0600 for		
	TION STATEMENT:		
submitted. You	liance Fee is required in connection with submission of the RAM Cor MUST attach a photocopy of the payment. You owe this fee when AM that continued an LRA, and have NOT previously submitted a l	submitting a RAM Completion S	Statement if you received oral
	on Waste will be stored, treated, managed, recycled or reused st submit a Phase IV Remedy Implementation Plan, along with RAM Completion Statemen	the appropriate transmittal for	
H. URAM NOTIFIC	CATION:		
Identify Location Type		-	Private Property
Identify Utility Type:	(check all that Sanitary/Lombineo	Water Drainag	Natural Gas
Telephone			
	Date of		
why the owner Check here if th	ne property owner was NOT contacted prior to initiation of the URA was not contacted, including the date and time when contact ultima his URAM will occur in connection with the construction of new public ncountered contamination, the scope and expense of necessary mited and the scope and sco	tely occurred. ic utilities. If this is the case, doo	cument the nature
With the exception sta connection with the L	ated below, the person undertaking the URAM must provide the nam URAM:	ne and license number of an LSF	engaged or employed in
		License Number:	
LSP information	n is not required if the URAM is limited to the excavation and/or han y Oil, or not more than 20 cubic yards of soil contaminated either b	dling of not more than 100 cubic	yards of soil
Revised 2/24/95	Supersedes Forms BWSC-007, 008, 009	and 010 (in part)	Page 2 of 4

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

RELEASE & UTILITY-RELATED ABATEMENT MEASURE (RAM & URAM) TRANSMITTAL FORM

BN	I S	C-	1	0	6
----	------------	----	---	---	---

3	-	13574

Pursuant to 310 CMR 40.0444 - 0446 and 310 CMR 40.0462 - 0465 (Subpart D)

I. URAM COMPLETION STATEMENT:

Check here if this URAM was limited to the excavation and/or handling of not more than 100 cubic yards of soil contaminated by Oil, or not more than 20 cubic yards of soil contaminated by either a Hazardous Material or a mixture of a Hazardous Material and Oil.

If any Remediation Waste will be stored, treated, managed, recycled or reused at the site following submission of the URAM Completion Statement, you must submit either a Release Abatement Measure (RAM) Plan or a Phase IV Remedy Implementation Plan, along with the appropriate transmittal form, as an attachment to the URAM Completion Statement.

J. LSP OPINION:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and (iii) the provisions of 309 CMR 4.03(5), to the best of my knowledge, information and belief,

if Section B of this form indicates that a Release Abatement Measure Plan is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal;

if Section B of this form indicates that a Release Abatement Measure Status Report or a Utility-Related Abatement Measure Status Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as se forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal;

if Section B of this form indicates that a Release Abatement Measure Completion Statement or a Utility-Related Abatement Measure Completion Statement is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal;

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof.

LSP Name: John C. Drobinski LS	P#: <u>2196</u>	Stamp:	ALT N CO ASS CONT		
Telephone: <u>817-267-8377</u> Exi	l.:	3/3/	JOHN VER		
FAX: (optional) 617-267-6417			DROBINSKI		
Signature.			QUSTE SA		
Date: 1/29/07			STEPROTING		
An LSP Opinion is not required for a Utility-Related Abatement Measure Notification.					
An LSP opinion is not required for a URAM Completion Statement if the URAM is limited to the excavation and/or handling of not more than 100 cubic yards of soil contaminated by Oil, or not more than 20 cubic yards of soil contaminated either by Hazardous Material or a mixture of Hazardous Material and Oil.					
K. PERSON UNDERTAKING RAM OR URAM:					
Name of <u>Raytheon Systems Compa</u>	any				
Name of Ronald C. Slager		Title: Manager,	Env.Rest.Program		
Street: 1001 Boston Post Road, MS-1-2-	1567				
City/Town: Marlborough		State: MA	ZIP Code: 01752-3789		
Telephone: 508-490-1707	Ext.:	FAX:			
Check here if there has been a change in person undertaking the RAM or URAM.					

	Massachusetts Department of Environmental Protection				
	BWSC-106				
	Release Tracking				
DEP	3 - 13574				
L. RELATIONSHIP TO SITE OF PERSON UNDERTAKING RAM or URAM: (check one)					
R P or PRP Specify: Owner Operator Generator Transporter Other RP or PRP: <u>Former Operator</u>					
Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2)					
Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))					
Any Other Person Undertaking RAM or URAM Specify					
M. CERTIFICATION OF PERSON UNDERTAKING RAM OR URAM:					
I, <u>Ronald C. Slager</u> , attest under the pains and penalties of perjury (i) that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this transmittal form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity on whose behalf this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information.					
- Cond	M.C. Alegun Title: Manager, Env. Rest.	Program			
(signature)		<u>11.094.6</u>			
For: <u>Ronald C.</u> (print name of p	$\frac{Slager}{reson or entity recorded in Section K}$ Date: $\frac{1/15/02}{reson V}$				
Enter address of person providing certification, if different from address recorded in Section					
Street:					
	State: ZIP Code:				
Telephone:	Ext.: FAX: (optional)				
YOU MUST COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE.					